

Tetrahedron Letters 43 (2002) 8235-8239

Synthesis of pyrimido[4,5-b]indoles and benzo[4,5]furo[2,3-d]pyrimidines via palladium-catalyzed intramolecular arylation

Yue-Mei Zhang,* Thomas Razler and Paul F. Jackson

Johnson & Johnson Pharmaceutical Research and Development, LLC, 1000 Route 202, Raritan, NJ 08869, USA

Received 5 August 2002; accepted 18 September 2002

Abstract—Various pyrimido[4,5-b]indoles and benzo[4,5]furo[2,3-d]pyrimidines were synthesized via a palladium-catalyzed intramolecular arylation of pyrimidine substrates. Thus, 4-aryloxy- or 4-anilino-5-iodopyrimidines were treated with $Pd(OAc)_2(PPh_3)_2$ and base in DMF to give the regioselective cyclized heterocycles. © 2002 Elsevier Science Ltd. All rights reserved.

Heterocycles containing a pyrimidoindole moiety attract considerable interest in pharmaceutical research due to their wide range of biological activity. A number of pyrimido[4,5-b]indole derivatives have been reported to show significant anti-hypertensive activity, antiinflammatory activities,² or act as A1 adenosine receptor antagonists,3 CFR1 and neuropeptide Y receptor ligands⁴ and potential tyrosine kinases (PTK) inhibitors.⁵ The synthesis of pyrimidoindoles generally applies to one of the following approaches: (1) construction of the pyrimidine ring via the condensation of 2-amino-3-cyanoindole with formic acid or 2-amnio-3indolecarboxylate with formamide or nitrile;^{1,6} (2) intramolecular amination of 4-halo-5-arylpyrimidines;⁷ and (3) the photochemical reaction of tetrazolopyrimidines.8 The analogous heterocyclic benzo[4,5]furo[2,3-d]pyrimidines are rare in themselves and a very limited amount of synthetic effort towards these that have been reported. These routes usually utilize intramolecular Diels-Alder reactions of as-triazine derivatives^{9a} or are prepared from 2-amino-3cyanobenzofurans.9b

All of these reported methods for substituted-benzene derivatives either required long sequences or are operatively not practical for pharmaceutical research labs. Therefore, in order to develop a convenient synthetic method allowing a variety of substituents (\mathbf{R} -) on the benzene ring ($\mathbf{1}$, Scheme 1) we began to explore palladium chemistry on this system. It has been reported

Scheme 1.

that the Pd-mediated biaryl coupling reactions proceed at high temperature $(120-150^{\circ}C)$;¹⁰ however, the Pdcatalyzed arylation on a pyrimidine system has not been explored. As a result, we have developed a general procedure for the intramolecular cyclization of 5iodopyrimidines for the syntheses of pyrimido[4,5-*b*]indole and benzo[4,5]furo[2,3-*d*]pyrimidine derivatives.

Our initial attempt to affect the Pd-catalyzed intramolecular arylation through addition of $Pd(OAc)_2$ -(PPh₃)₂ (10 mol%), Et₃N (1.5 equiv.) to pyrimdine **2a** in DMF (0.5 M) at 80°C gave the cyclized product **3a** along with the deiodinated by-product **4a** and the homocoupled product **5a** in a ratio of 4.5:2:1 (Eq. (1)).

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02036-1

^{*} Corresponding author. Tel.: 908-429-1998; fax: 908-526-6469; e-mail: yzhang5@prdus.jnj.com

Since tertiary amines have been found to act as hydride donors in palladium-catalyzed reactions,¹¹ we investigated the effect of bases on the internal arylation of 4-anilino-5-iodopyrimidine. Different solvents, palladium catalysts and ligands were also examined. The results are summarized in Table 1.

We found that the catalysts and ligands had a profound effect on the reaction yield. The catalyst $PdCl_2(PPh_3)_2$, which is mostly used in this type of arylation reaction, provided a 55% yield of product 3a, whereas, Pd(OAc)₂(PPh₃)₂ provided 3a in 86% yield. The bidentate ligand (±)-BINAP also proved to be effective in this case and gave 65% yield. The use of $Pd_2(dba)_3/$ dppp (Table 1, entry 5) led to complex results, where 27% of 3a, 5% of deiodinated 4a, 2% of homocoupled by-product 5a and 24% of starting material 2a were observed. The reaction resulted in a 49% yield of 3a when the bulkier ligand, 2(di-t-butylphosphino)biphenyl (Table 1, entry 4) was used. To our surprise, under the conditions (Pd(OAc)₂/NaOAc), which usually effected the internal arylations,¹⁰ the reaction was extremely slow and gave only 13% of 3a with 33% of starting material 2a remaining after 48 h.

The effect of base on the reaction was also investigated. The reaction rate was increased by using the organic base Et_3N (Table 1, entry 7). The starting material was completely consumed in 7 h; however, by-products **4a** and **5a** were also formed along with the desired cyclized **3a**. The replacement of Et_3N with an inorganic base such as NaOAc circumvented the side reactions completely. No by-products were observed by HPLC analysis. Other bases that have been explored include Cs_2CO_3 , NaOBu', and NaHCO₃. However, only Cs_2CO_3 provided a satisfactory yield (60%) though this was not as effective as NaOAc.

A study of the influence of different solvents (DMF, DMA, dioxane, CH_3CN) suggested that DMF (85°C) or DMA (100°C) were the best choices. No reaction was observed at 70°C or lower.

In order to determine the versatility of this intramolecular arylation process on a pyrimidine system, a number of pyrimido[4,5-*b*]indole derivatives were synthesized by employing the optimized reaction condition, Pd(OAc)₂(PPh₃)₂/NaOAc/DMF. The various 4-anilino-5-iodopyrimidines were prepared from 4-chloro-5-iodopyrimidine¹² and the appropriate anilines in refluxing EtOH in good yields (Table 2).

Compounds 2 bearing various substituents on the anilino portion, were then subjected to $Pd(OAc)_2$ - $(PPh_3)_2$ (10 mol%), NaOAc (1.5 equiv.) in DMF (0.01 M) at 85°C, leading to the cyclized products 3 in moderate to good yields. The *N*,*N*-disubstituted anilinopyrimidine **2f** also underwent the cyclization in 51% yield. Generally, the reaction occurred at the less hindered site on the aromatic ring. For example, only a single product was isolated from the reactions of pyrimidines **2c**, **2g** and **2j**. The reaction of the substrate **2d** with trimethoxy groups on the phenyl ring also proceeded well to give a 64% yield of **3d**. Interestingly, the reaction of pyrimidine **2i** gave a mixture of two products, **3i** and **3i**' in a ratio of 1.8:1 (determined by crude ¹H NMR).

Entry	Pd catalyst	Ligand	Base	Solvent	Time (h)	Yield ^b (%)
1	$Pd(OAc)_2(PPh_3)_2$	_	NaOAc	DMF	36	86
2	$PdCl_2(PPh_3)_2$	-	NaOAc	DMF	48	55
3	$Pd(OAc)_2$	(\pm) -BINAP	NaOAc	DMF	48	65
4	Pd(OAc) ₂	$P(t-\operatorname{Bu})_2$	NaOAc	DMF	48	49
50			NOA		70	27
50	$Pd_2(dba)_3$	2 dppp	NaOAc	DMF	12	27
6	$Pd(OAc)_2$	_	NaOAc	DMF	48	13
7ª	$Pd(OAc)_2(PPh_3)_2$	—	Et_3N	DMF	7	42
8	$Pd(OAc)_2(PPh_3)_2$	_	Cs_2CO_3	DMF	36	60
9	$Pd(OAc)_2(PPh_3)_2$	_	NaHCO ₃	DMF	48	39
10 ^e	$Pd(OAc)_2(PPh_3)_2$	_	NaOBu ^t	DMF	48	2
11 ^f	$Pd(OAc)_2(PPh_3)_2$	_	NaOAc	DMA	30	88
12	$Pd(OAc)_2(PPh_3)_2$	_	NaOAc	Dioxane	36	71
13 ^g	$Pd(OAc)_2(PPh_3)_2$	-	NaOAc	CH ₃ CN	48	8

Table 1. Effect of Pd catalysts, ligands, bases and solvents on the intramolecular arylation of 2a^a

^a Reaction conditions: 10 mol% of catalyst/ligand, 1.5 equiv. of base in solvent (0.01 M) at 85°C.

^b HPLC yield. All reactions were monitored by HPLC.

^c A 5% of 4a and 2% of 5a were formed with a 24% of SM recovered.

^f The reaction was run at 100°C.

^g The reaction was run at 80°C, 15% of SM recovered.

^d A 13% of 4a and 7% of 5a were formed; 0.5 M reaction solution.

e 30% of SM remained.

a All reactions were monitored by TLC. Isolated yield.

In an analogous manner, the intramolecular cyclization of 4-aryloxypyrimidine in the presence of Pd(OAc)₂- $(PPh_3)_2$ and NaOAc, led to the formation of benzo[4,5]furo[2,3-d]pyrimidine derivatives. As shown in Table 3, treatment of 4-chloro-5-iodopyrimidine with various phenols and Cs₂CO₃ in DMF at 90°C gave the corresponding aryloxy-5-iodopyrimidines 6. The optimized reaction condition for 4-anilino-5-iodopyrimidines also effected the cyclization of 6 to give the pyrimidobenzofurans 7. The arylation reaction of 6, typically completed in 7-12 h, was faster than that of the anilinopyrimidines 2, which were completed in 24-48 h. Again, the cyclization was regioselective for the substrates 6d, 6g, and 6i, in which cases, only a single product was isolated. The reaction of naphthyl substrate 6k and 6l (Table 3, entries 11 and 12) also proceeded well to give 54 and 65% yield of product, respectively.

Although the above method appears general, we have discovered some limitations to it. Substrates bearing strong electron-withdrawing groups on the phenoxy ring such as a nitro group did not undergo the intramolecular arylation. In addition, the six-membered ring formation from 4-benzyloxy-5-iodopyrimidine was also attempted with no desired product being formed.

Overall, a concise method for the synthesis of various pyrimido[4,5-*b*]indole and pyrimido[4,5-*b*]benzofuran derivatives was achieved by a two-step sequence. Nucle-ophilic displacement of 4-chloropyrimidines with anilines or phenols, followed by the intramolecular arylation reaction of 4-anilino- *or* 4-aryloxy-5-iodoyrimidines, provided the pyrimido[4,5-*b*]indole and pyrimido[4,5-*b*]benzofuran derivatives. This method provides a new entry into interesting heterocycles containing a pyrimidine ring.

Table 3. Pd-catalyzed intramolecular arylation of 4-aryloxy-5-iodopyrimidines

	2 equiv. Cs ₂ CO ₃ ArOH, DMF, 90 °C			10% Pd(OAc) ₂ (PPh ₃) ₂	
entry	y ArOH	6	yield (%)	7	yield ^a (%)
1	НО- Ме	6a	78		37 ^a (60) ^b
2	HO-CO ₂ Me	6b	75		60
3		6c	73		58
4		6d	69		57
5	HO-NMe2	6e	40		50
6		6f	80	MeO N	68
7	но-	6g	60	MeO N	64
8	но- С р	6h	67		39
9	но-	6i	74		36
10		6j	58	Me	59
11	но	6k	54		54
12	ОН	61	49		65

a Isolated yields. b HPLC yields

Supplementary material

Experimental details for the synthesis of compounds 2, 3, 6, and 7 is provided. ¹H and ¹³CNMR spectra and electronspray MS spectra are also included.

Acknowledgements

We thank Amy Maden for analytical support.

References

- Venugopalan, B.; Dedai, P. D.; de Souza, N. J. J. Heterocyclic Chem. 1988, 25, 1633.
- Bundy, G. L.; Banitt, L. S.; Dobrowoski, P. L.; Palmer, J. R.; Schwartz, T. M.; Zimmermann, D. C.; Lipton, M. F.; Mauragis, M. A.; Veley, M. F.; Appell, R. B.; Clouse,

R. C.; Daugs, E. D. Org. Process Rev. Dev. 2001, 5, 144 and references cited therein.

- (a) Muller, C. E.; Geis, U. L.; Grahner, B.; Lanzner, W.; Eger, K. J. Med. Chem. 1996, 39, 2483; (b) Muller, C. E.; Hide, I.; Daly, J.; Rothenhausler, K.; Eger, K. J. Med. Chem. 1990, 33, 2822.
- 4. Darrow, J. W.; Magnard, G. D.; Horvath, R. F. Int. Pat. Appl. WO 9,951,598, 1999.
- Showalter, H. D.; Bridges, A. J.; Zhou, H.; Sercel, A. D.; McMichael, A.; Fry, D. W. J. Med. Chem. 1999, 42, 5464.
- Portnov, Y. N.; Bulaga, S. N.; Zabrodnyaya, V. G.; Smirnov, L. D. Khim. Geterotsikl. Soedin. 1991, 3, 400.
- 7. Ple, N.; Turck, A.; Heynderickx, A.; Queguiner, G. J. *Heterocyclic Chem.* **1994**, *31*, 1311.
- (a) Erb, E.; Pocar, D.; Valle, M. J. Chem. Soc., Perkin Trans. 1 1999, 421; (b) Kondo, Y.; Watanabe, R.; Sakamoto, T.; Yamanak, H. Chem. Pharm. Bull. 1989, 37, 2933; (c) Higashino, T.; Hayashi, E. Heterocycles 1981, 15, 483; (d) Hyatt, J. A.; Swenton, J. S. J. Org. Chem. 1972, 37, 321.

- (a) Saji, M.; Wada, K.; Kono, S.; Yamanak, H. *Heterocy-cles* **1990**, *30*, 1009; (b) Makovetskki, V. P.; Volovenko, Yu. M.; Svishchuk, A. A. *Ukr. Khim. Zh.* **1985**, *51*, 528.
- (a) Qabaja, G.; Jones, G. *Tetrahedron Lett.* 2000, 41, 5317; (b) Harayama, T.; Akiyama, T.; Akamatsu, H.; Kawano, K.; Abe, H.; Takeuchi, Y. *Synthesis* 2001, 3, 444 and references cited therein; (c) Iwaki, T.; Yasuhara, A.;

Sakamato, T. J. Chem. Soc., Perkin Trans. 1 1999, 11, 1505; (d) Rice, J. E.; Cai, Z.-W. J. Org. Chem. 1993, 58, 1415; (e) Bringmann, G.; Jansen, J. R.; Reuscher, H.; Rubenacker, M. Tetrahedron Lett. 1990, 31, 643.

- Lau, S. T. W.; Andersen, N. G.; Keay, B. A. Org. Lett. 2001, 3, 181.
- 12. Bredereck, H.; Simchen, G.; Traut, H. Chem. Ber. 1967, 100, 3664.